Formal Verification of Business Process Configuration within a Cloud Environment

Presented by
Souha Boubaker

Telecom SudParis, UMR 5157 Samovar, Paris-Saclay University, France
ENIT, UR-OASIS, University of Tunis El Manar, Tunisia
Outline

- Research Context
- Towards Correct Business Processes Configuration
 - Motivation
 - EVENT-B method
 - Formalizing Configurable Process Models
 - Formalizing Configuration steps
 - Configuration Guidelines
 - Verification and Validation
- Towards Correct Cloud Resource Allocation in Business Processes
 - Motivation
 - Event-B Model
 - Modeling Control Flow
 - Modeling Cloud Resource Allocation
 - Verification and Validation
- Conclusion
Outline

■ **Research Context**

■ **Towards Correct Business Processes Configuration**
 • Motivation
 • EVENT-B method
 • Formalizing Configurable Process Models
 • Formalizing Configuration steps
 • Configuration Guidelines
 • Verification and Validation

■ **Towards Correct Cloud Resource Allocation in Business Processes**
 • Motivation
 • Event-B Model
 • Modeling Control Flow
 • Modeling Cloud Resource Allocation
 • Verification and Validation

■ **Conclusion**
Research Context

- Business process design

Diagram:
- What?
- How?
- By whom?
- Process Definition
- Tasks and Processes
- Resources and scheduling
- Resource Classification allocation rules
- Analyse
- Realisation
- Objectives
- Analyse
- Text
What are Configurable Process Models?

- Process Family: Different variants of the same process

- targeting customers’ demographics
- executed by different branches
What are Configurable Process Models?

- Example: Complaints Process Model

Configurable elements with green color
Problems Statement (1 / 2)

- Assumption: analysts derive process variants from a configurable process

- Observation: variant models often contain errors
 - Why?
 - How to avoid them?

The correctness of the process configuration is of paramount importance in order to avoid execution errors
“Cloud adoption is growing at greater than 25% CAGR (compound annual growth rate)”

Jane Munn, IBM
Resource Allocation in Business Processes

- **Activity 1**: Contact Organisation
- **Activity 2**: Fill complaints form
- **Activity 3**: Mail complaints

Cloud Resources
- **Shareable**
- **Elastic**

- ✓ **lower costs**, **more flexibility** and **greater scalability**
Problems Statement (2 / 2)

- Assumption: analysts assigns resources to process activities.

- Observation: inconsistencies in the Cloud resource allocation behavior may occur.
 - Why?
 - How to avoid them?

The correctness and the efficiency of the Cloud resource allocation is still required by the tenant
Outline

- Research Context
- Towards Correct Business Processes Configuration
 - Motivation
 - EVENT-B method
 - Formalizing Configurable Process Models
 - Formalizing Configuration steps
 - Configuration Guidelines
 - Verification and Validation
- Towards Correct Cloud Resource Allocation in Business Processes
 - Motivation
 - Event-B Model
 - Modeling Control Flow
 - Modeling Cloud Resource Allocation
 - Verification and Validation
- Conclusion
Motivation

Configuring a process model may be quite difficult and

- Analysts may easily make mistakes in selecting configuration choices
- A configuration step
- Lack of synchronization
- Deadlock

Configuration guidelines allow to be inline with domain constraints

An example of such rules is: “if a9=OFF then a14=OFF”
Objectives

- Guide the process analyst to easily configure process models while preserving correctness.
 - Analyze and check the correctness of a configurable process
 - Assist analyst in order to derive correct variants

- Respect specific domain constraints: Configuration guidelines introduced by Rosemann, M. et al.

✓ Perform an incremental formal verification by checking correctness and domain constraints at each intermediate step of the configuration procedure.
The EVENT-B method

- **Two Key features:**
 - *Stepwise refinement model:* represent systems at different abstraction levels;
 - *Proof-based model:* the use of mathematical proofs to verify consistency between refinement levels.

- **Two types of entities:**
 - Contexts: the static part
 - Machines: the dynamic part
Approach Overview

1. Modeling configurable process
 - Configurable process

2. MDE transformation
 - Is incorrect if violated invariant

3. Event-B Model specification
 - Correct & domain-compliant process variant

4. Proof-based verification
 - Machine M0: Variables and invariants for control flow specification are defined.
 - Machine M1: Configuration guidelines are introduced

5. Model checking verification
 - N configurations
 - Firing an appropriate event
 - Partially configured process
 - As input
 - As final output
 - Computing event guards
 - Correctness constraints of M0
 - Domain constraints of M1

- Machine M0 validation invariance: the basic control specifications are defined.
Formalizing Configurable Process Models

Machine M0:
- **Invariants:**
 - Correctness constraints
 - Configuration constraints
- **Events:** configuration steps
 - Activity configuration
 - Connector configuration: either a split or a join connector

Machine M1:
- **Invariants and events guards defining Configuration Guidelines**
Correctness Constraints

- **Structural Invariants**
 - Except the initial and the final nodes, each activity have exactly one incoming and one outgoing arc;
 - A split connector has:
 - exactly one incoming and
 - at least two outgoings arcs;
 - A join connector has:
 - at least two incomings arcs and
 - exactly one outgoing;
Correctness Constraints

- **Soundness Invariants**
 - All nodes of the process can be activated (i.e. every node can be reached by the initial activity);
 - For each activity in the process, there is at least one possible sequence leading from this activity to a final activity, i.e. the termination is always possible.
Correctness Constraints

- Behavioral Invariants
 - The configuration of a business process model may affect the soundness by two types of potential errors:
 - lack of synchronization : 3 invariants
 - Deadlocks : 3 invariants
 - These situations result from a mismatch between splits and joins.
Configuration Constraints

- Activity Configuration invariants
 - An invariant defining the model once an activity is removed: OFF activity configuration
 - An invariant defining the model after keeping an activity: ON activity configuration

- Connector Configuration invariants
 - Invariants defining the configuration constraints for each type of connector are defined according to the table:

<table>
<thead>
<tr>
<th>FROM-TO</th>
<th>OR</th>
<th>XOR</th>
<th>AND</th>
<th>seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>XOR</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Formalizing Configuration Steps

- **Activity Configuration Events**
 - Two events:
 - *ConfigureACTON* event keeps an activity;
 - *ConfigureACTOFF* event excludes an activity.

```plaintext
ConfigureACTON(bp1, bp2, a11)
ConfigureACTOFF(bp2, bp3, a12)
```

Configurable activities a11 and a12
Formalizing Configuration Steps

- **Connector Configuration Events**
 - Two events for each connector:
 - One event for the split configuration: ConfigureORSplit, ConfigureXORSplit and ConfigureANDSplit.
 - A second event for the join configuration: ConfigureORJoin, ConfigureXORJoin and ConfigureANDJoin.
Formalizing Configuration Steps

Connector Configuration Events

- Each connector configuration event has to consider the following requirements:
 - The configuration constraints for each type of connector
 - Only configurable nodes can be removed to avoid unreachable ones;
 - The connectors types matching checking in order to prevent erroneous situations.

✓ we added for each event corresponding guards that should hold in order to apply a configuration step.
Formalizing Configuration Steps

- **Connector Configuration Events**
 - Example: the configuration of \textit{opj3} to AND could never be applied if \textit{ops5} has been already configured to XOR

\[
\text{ConfigureORSplit}(bp_1, bp_2, ops_5, \{a_9, a_{11}\}, \text{XOR}, \ldots)
\]

\[
\text{ConfigureORJoin}(bp_2, bp_3, opj_3, \{a_{10}, a_{12}\}, \text{AND}, \ldots)
\]
Injecting Configuration Guidelines in the Model

Machine M1:

- *Configuration guidelines* are introduced to depict relevant inter-dependencies between the configuration decisions in order to be inline with *domain constraints*.

- Such guidelines are expressed via logical expressions of the form *If-Then-rules*.
Verification & Validation

- Verification using formal Proofs

 - Using the *Rodin tool*, our model generated 358 proof obligations (POs);

 - In order to demonstrate the model correctness, all generated proofs should be proved and discharged

 - Every defined invariant must be preserved and proved using these proofs

 - (272 POs ≈ 76%) were automatically discharged; and more complex ones (86 POs ≈ 24%) were interactively discharged
Verification & Validation

Interactive Proving Interface in Rodin
Verification & Validation

- Validation by animation using ProB

 - It allows the modification of the state of the model by *triggering the enabled events* that modify variables using constants.

 - It allows to play different scenarios and check the behavior of the Event-B model
The lack of synchronization situation is not possible.
Case Study

- How can our approach assist process analyst in applying correct configuration steps?

- Results:
 - our approach allows to:
 - save time and facilitate the identification of the configuration steps;
 - guarantee a correct process model at each configuration step;
 - derive domain-compliant process variants based on the configuration guidelines.
Outline

- **Research Context**
- **Towards Correct Business Processes Configuration**
 - Motivation
 - EVENT-B method
 - Formalizing Configurable Process Models
 - Formalizing Configuration steps
 - Configuration Guidelines
 - Verification and Validation
- **Towards Correct Cloud Resource Allocation in Business Processes**
 - Motivation
 - Event-B Model
 - Modeling Control Flow
 - Modeling Cloud Resource Allocation
 - Verification and Validation
- **Conclusion**
Motivation

Stores values/delay the same
Properties and constraints
available as a capacity
covering activity need

Network1 was allocated by two
activity instances of a19

Web form request

Find user profile (a2) → Recommend hotels (a3) → Select package (a6)

Common Shareable Elastic

Search hotel (a7) → Select hotel (a8)

New user (a5)

Common Shareable Elastic

Discount (a14)

Online payment (a15)

Confirmation (a17)

Request aborted (a19)

Compute3 should have the same
Properties and constraints
as well as a capacity covering activity need!
Resources Properties

A Cloud resource can be:

- **Elastic OR Non-elastic.**
 - A resource is *elastic* if we can change its capacity at runtime.
 - A resource is non-elastic if its capacity is fixed and cannot be modified at runtime.

- **Shareable OR Non-Shareable**
 - A resource is Shareable if it can be allocated by many activities' instances.
 - A resource is non-Shareable if it can be used by only one activity instance.

- **Shareable**
 - **Exclusive Shareable**
 - If its resource instances can be allocated by activities' instances but **not consumed at the same time**
 - **Common Shareable**
 - If its resource instances can be allocated and used by several activities' instances **at the same time**
Event-B Model

- Machine BPM0, the control flow perspective is modeled.
- Machine BPM1, the process execution instances are introduced.
- Machine BPM2, the allocated resources by a process activity are added and the shareability property of a cloud resource is pointed out.
- Machine BPM3, the resource perspective is refined by adding running resource instances.
- Machine BPM4: the elasticity property of a cloud resource is added.
First Level of Refinement: Introduces Execution Instances
- The sequencing between Business process execution events

An activity instance life cycle

- CreateBP(bp,acts,and_activDep, or_activDep)
- AddBpInst(bp,bpi)
 - bp_instances_type:=bp
 - AddACTInst(bp,ac,ai)
 - ACTInstances_type(ai):=a
 - ACTInstances_bpInstances(ai):=bpi
 - ACTInstances_State(ai):=initiated
- CancelACTInst(ai)
- RunACTInst(ai)
 - ACTInstances_State(ai):=running
- FailACTInst(ai)
- CompleteACTInst(ai)
Second Level of Refinement: Introduces Resource Perspective

- The allocation dependency: denotes for each process the relation of a possible allocation between a resource and an activity. (pattern Direct Allocation (WRP-01) defined by N. Russel et al.).
 - A relation AllocationDep.

- The substitution dependency: captures the possibility to replace a resource by another to perform some work in case of its unavailability or absence.
 - A relation SubstitutionDep
Second Level of Refinement: Adds the shareability property

- *Shareability Constraints*
 - a resource may be shareable in a given process and non-shareable in another.
 - only shareable resources may have several allocation dependencies;
 - Two shareability properties: *Exclusive shareable* and *common shareable resource*.
Modeling Cloud Resource Allocation

- **Third Level of Refinement: Adds the resource instances**

Exclusive **shareable** resource instances can be allocated and used by different activities' instances but not at the same time,
Modeling Cloud Resource Allocation

Fourth Level of Refinement: Models Cloud Resource Elasticity

- Support the pattern **Capability-based Allocation (WRP-08)** defined by N. Russel et al.

- The allocation is based on the matching of specific activities requirements with the capabilities of resources.

```
Inv6: \forall ai, ri.(ai \in ACT_Instances \land ri \in RES_Instances \land ACT_Instances_State(ai) = completed \land ri \mapsto ai \in Consumed \land ri \mapsto ai \in \text{dom}(ACTInstance\_RES_\text{Needs}) \Rightarrow ACTInstance\_RES_\text{Needs}(ri \mapsto ai) \leq RESInstance\_Capacity(ri))
```

```
Inv5: \forall bp, r.(r \in RES \land bp \in BP \land bp \mapsto r \in \text{dom}(AllocationDep) \land Elastic(bp \mapsto r) = FALSE \Rightarrow \text{SUM}(\{(bp \mapsto r) \times BP\_activities[{bp}]\} < ACT\_RES_\text{Needs}) \leq RES\_Capacity(r))
```
Fourth Level of Refinement: Models Cloud Resource Elasticity

- **Elasticity Events:**
 - \textit{ResizeUpRESInst} increases the capacity of a resource instance according to the activities instances needs.
 - \textit{ResizeDownRESInst} decreases the capacity of a resource instance in case it is unnecessary to the activity instance.
Verification & Validation

Verification using formal Proofs

- Each invariant should be established by the initialisation and preserved by each event.

- Using the *Rodin tool*, our model generated 338 proof obligations (POs);
 - (257 POs ≈ 76%) were automatically discharged; and more complex ones (81 POs ≈ 24%) were interactively discharged.
Verification & Validation

Interactive Proving Interface in Rodin
Verification & Validation

- Validation by animation using ProB

 - It allows to check the correctness/validity of the model by playing different scenarios;

 - At each moment, it is possible to know which event are enabled or not
Verification of the development

- Verification using ProB
Signavio Extension (proof of concept)
Outline

■ Research Context
■ Towards Correct Business Processes Configuration
 • Motivation
 • EVENT-B method
 • Formalizing Configurable Process Models
 • Formalizing Configuration steps
 • Configuration Guidelines
 • Verification and Validation
■ Towards Correct Cloud Resource Allocation in Business Processes
 • Motivation
 • Event-B Model
 • Modeling Control Flow
 • Modeling Cloud Resource Allocation
 • Verification and Validation
■ Conclusion
Conclusion

- **A formal verification model** to
 - Analyze and check the correctness of a configurable process model
 - Ensure correct derived variants with respect to configuration guidelines

- **A formal verification model** for resource allocation in business process while considering:
 - Cloud resources properties
 - Different relationships between activities and resources.

- Integration of Cloud Resource description in Signavio Editor
Current work

- An approach for process configuration based on a reduced SOG (Symbolic observation graph) that groups the behavior of all correct configurations

- The set of correct configurations combinations is extracted and supplied to the analyst at design time
Future work

- An approach for process fragments consolidation and merging while considering correctness constraints

- An approach for process resources QoS management and verification
References

- Formal approach for verifying the **correctness and domain compliance** of a configurable process model and its derived variants.

 The work was published in two conferences proceedings:

- Formal approach for ensuring a **correct and consistent** Cloud resource allocation in business process modeling.

 The work was published in two conferences proceedings and a peer reviewed journal:

Thank you for your attention

Souha Boubaker
E-mail: souha.boubaker@telecom-sudparis.eu